Nitrogen Pollution Accelerates Wood Decomposition
Nitrogen Pollution Accelerates Wood Decomposition
/ Categories: Climate Change, All

Nitrogen Pollution Accelerates Wood Decomposition

Nitrogen in the atmosphere is converted to a useful form by natural processes, such as bacteriological nitrogen fixation and lightning strikes, and anthropogenic activities, such as agricultural fertilization, fossil fuel combustion, and other industrial processes. This conversion helps distribute the supply of this nutrient, which is essential for plant growth and food production.

However, air pollution as a result of human activities has led to increased nitrogen input to ecosystems, as it rains down on landscapes. Although nitrogen is a key nutrient, too much anthropogenic nitrogen deposition - the input of converted nitrogen from the atmosphere to terrestrial ecosystems - is detrimental to important ecological processes such as decomposition. Biomass production and storage depend on nitrogen availability. Fallen leaves and “dead wood” (fallen branches and trees) release carbon dioxide back into the atmosphere when they decompose. Decomposer species such as fungi are key accelerators of the process and are crucial in recycling key nutrients such as nitrogen back into the soil.

 “We conducted experiments to see how wood decay fungi respond to nitrogen deposition in temperate forests like those in the U.K. and most parts of Europe,” said Dr. Dan Bebber, head of climate change research at Earthwatch and author of the study. “Our results show that small increases in nitrogen availability can increase wood decomposition by the decay fungi, and this can affect forest carbon capture and storage.”

“Forest design and management can have significant influences on nitrogen availability, and this has implications for a number of ecological processes and organisms that depend on decaying wood as a source of food, nutrients, and cover. Sustainable forestry practices already recognize the inclusion of dead wood as a key feature of productive and resilient ecosystems. However, we should be careful to ensure that nitrogen deposition doesn’t reach a level where inputs are in excess of biological demand. Both tree growth and wood decay are affected by nitrogen availability, and excess nitrogen pollution could alter the balance between these processes. The biodiversity of forest ecosystems can also be affected, as higher nitrogen availability rapidly increases the growth of nitrogen-demanding plants, at the cost of others.”

Decomposition rates are generally greater in plants with low carbon-to-nitrogen ratios. The two major types of forest litter—plant and wood—have differing levels of carbon and nitrogen, and different communities of fungi rely on these litter types for nutrition.

Saprotrophic basidiomycete fungi were the decay organisms used in the study. They play a major role in how ecosystems function, and contribute significantly to the carbon cycle, as they are the only species capable of breaking down decaying wood. Basidiomycete fungi reside in the soil, storing and transporting nutrient resources across distances of several meters through their mycelial cords. These interconnected networks of resources mean they are very efficient in recycling nitrogen and also adapting to environments with low nitrogen availability.

Dan Bebber added: “Plant litter decomposition using simulated nitrogen levels has been previously studied. However, variations in the results from these experiments could be due to the large amounts of nitrogen added. Our research, using realistic simulations of nitrogen availability in temperate forests, is contributing to the research gap on the role of nitrogen availability on wood decay. The results will be useful for woodland managers, conservationists, and policy makers.”

“Our experiments were carried out in beech plantations at Earthwatch’s forest research center near Oxford, one of five around the world. Our center in Oxford is the base for our forest research in the U.K. where Earthwatch scientists are carrying out fieldwork with the help of volunteers, to see how Europe’s forests are responding to climate change. In the U.K., our research paper will be one of the first to provide a comprehensive picture of the carbon cycle in fragmented forests.”

“Forests help stabilize the climate by storing carbon. Understanding the carbon cycle, the movement of carbon through the Earth’s system, is a key step to understanding climate change.”

Read the complete study published by Earthwatch and the University of Oxford in the international journal Oecologia.


Previous Article Earthwatch Is 40!
Next Article New Conservation Area in Brunei to Benefit from Innovative Partnership


Press Information

For press information, interviews and image requests, contact us today.